

3rd Integrated CNS Technologies Conference & Workshop

A Common Information Network for Aeronautical

10100101010010101010101000101

Mark S. Taylor **Avaliant LLC**

20 May 2003

Air Traffic Management

AirTrafficManagement

0010100011 01010100110101111010101

Presentation outline

- The CIN concept
- The current landscape
- Primary architectural considerations
- Architectural concepts
- Final thoughts

The CIN concept

6/4/2003 Page 3

The CIN concept – an open architecture

	Open Systems Interconnection reference model layers	Functions	Example standards
Common 7 Information Base 6	Applications	Standard services to applications & API's	LDAP
	Presentation	Formats, compression, encryption, encoding	Sockets, X.400
Common 4 Transport 3 Network 2	Transport and Session	End-to-end session & connectivity mgmt	TCP, UDP, TP2, TP4
	Network	Internetworking	IP, CLNP
	Physical and Data Link	Physical transmission mgmt	VDL, FDDI, Ethernet

The CIN concept – information management

The current landscape

- Multiple network domains, owners and users:
 - Air traffic authorities
 - Airlines and aircraft operators
 - Data link service providers
 - Data services (weather, etc.)
- Multiple incompatible technologies:
 - VHF voice; VDL-2,3,4
 - ACARS
 - ATN
 - FTI
 - ...

→ Resistance to Change!

The current landscape – ACARS

- Aircraft Communication Addressing and Reporting System (ACARS) provides air-ground data link services via VHF, SatComm and HF
 - Only currently widespread air-ground data link
 - SatComm-equipped aircraft switch between SatComm and VHF
- "ACARS" can refer to either:
 - Messaging function supporting CPDLC and ADS applications
 - Routing function gets messages to intended destinations
- Two companies offer ACARS services:
 - ARINC GLOBALink and SITA AIRCOM Datalink
 - CMS / MU controls preferences for ARINC or SITA
 - ARINC / SITA ground equipment queue one another as aircraft transitions from one data authority to the next data authority

→ Resistance to Change!

Air Traffic Management

03.ppt 6/4/2003 Page 7

The current landscape – ATN

- Aeronautical Telecommunications Network (ATN):
 - In development by ICAO for over 15 years
 - Provides air-ground and ground-ground communications
 - Enhances CPDLC message set and other applications
 - Based on modified OSI data communication protocols
- ATN looks nice on paper, but...
 - OSI is legacy technology
 - Modifications mean nonstandard protocols
 - Non-COTS solutions are expensive, insecure and risky
 - Focus on air-ground link introduces Layer 3 disconnects
 - Mobility based on inter-domain routing convergence

→ Resistance to Change!

Air Traffic Management

.ppt 6/4/2003 Page 8

The current landscape – ATN mobility

- The backbone confederation advertises itself as the default route to the "All Aircraft" prefix
- Individual aircraft connect to the island and advertise their "Specific Aircraft" prefix
- Backbone domains are updated with the route to the specific aircraft prefix

The current landscape – ATN mobility

- When a host needs to communicate with an aircraft, it sends all packets toward the default for "All Aircraft"
- Backbone and subsequent domains forward packets toward the "Specific Aircraft" prefix

The current landscape – FTI

The current landscape – summary

Area of Comparison	ACARS (Current)	ATN (Future)	FTI (In deployment)	CIN (Concept)
Domain of coverage	Air-ground	Air-ground, Ground-ground	Ground-ground	Air-ground, Ground-ground
Range of services	End-to-end	End-to-end	SDP-to-SDP	End-to-end
Top ISO/OSI Reference Model layer addressed	Application	Application	Network	Session
Protocol base	Proprietary message-switching	Modified OSI	IPv4	IPv4, IPv6
Networking industry support	Minimal	Minimal	Widespread	Widespread
Security capabilities	None	Planned	Network-level	End-to-end
Risks	Security, reliability, performance	Costs, security, expertise, scalability, commonality, certification	Security, commonality	Certification

AirTraffic Management

Primary architectural considerations

- Airborne elements: limited air-ground bandwidth, multiple DLSPs, mobility
- Safety of flight: ultra-high availability
- Multiple voice & data services: service quality
- Globally accessible: space-based infrastructure
- Scale: 100K's of aircraft and K's of terrestrial nodes
- Security: authentication, confidentiality, integrity, attackresistance, authorization, access control, key management
- Legacy compatibility: avionics retrofits very expensive
- Multiple levels of onboard equipage

Architectural concepts – multi-homed mobility

Architectural concepts - conventional routing

Architectural concepts - policy-based routing

Concurrent communication over multiple air-ground data links

Local routing policy on MR determines which data link (path) traffic will take

Example: Safety of life traffic is routed over A/G Link 1 while routine business traffic Is simultaneously routed over A/G Link 2

Architectural concepts – potential policybased routing implementation scenario

Architectural concepts – current airborne network

Architectural concepts – onboard network

6/4/2003 Page 19

Architectural concepts – terrestrial network

→ Widely-used standards and technologies!

AirTraffic Management

Architectural concepts – security reference model

Air Traffic Management

Final thoughts

- There are significant issues with current and proposed approaches to ATM communications services
- Resistance to change does not help
- An Internet Protocol standards-based approach to end-to-end ATM communications leverages the efforts of thousands of developers worldwide

